Package: RFclust 0.1.2

RFclust: Random Forest Cluster Analysis

Tools to perform random forest consensus clustering of different data types. The package is designed to accept a list of matrices from different assays, typically from high-throughput molecular profiling so that class discovery may be jointly performed. For references, please see Tao Shi & Steve Horvath (2006) <doi:10.1198/106186006X94072> & Monti et al (2003) <doi:10.1023/A:1023949509487> .

Authors:Ankur Chakravarthy, PhD

RFclust_0.1.2.tar.gz
RFclust_0.1.2.zip(r-4.5)RFclust_0.1.2.zip(r-4.4)RFclust_0.1.2.zip(r-4.3)
RFclust_0.1.2.tgz(r-4.4-any)RFclust_0.1.2.tgz(r-4.3-any)
RFclust_0.1.2.tar.gz(r-4.5-noble)RFclust_0.1.2.tar.gz(r-4.4-noble)
RFclust_0.1.2.tgz(r-4.4-emscripten)RFclust_0.1.2.tgz(r-4.3-emscripten)
RFclust.pdf |RFclust.html
RFclust/json (API)

# Install 'RFclust' in R:
install.packages('RFclust', repos = c('https://archakravarthy.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • gbm - Multi-omic profiling of glioblastoma samples

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 4 scripts 97 downloads 1 exports 6 dependencies

Last updated 2 years agofrom:94bf809d3e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:RFCluster

Dependencies:ALLBiobaseBiocGenericsclusterConsensusClusterPlusrandomForest